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SUMMARY

Statistical tests of carcinogenicity are shown to have varying degrees of robustness to the effects of
mortality. Mortality induced by two different mechanisms is studied—mortality due to the tumor of
interest, and mortality due to treatment independent of the tumor. The two most commonly used
tests, the life-table test and the Cochran-Armitage linear trend test, are seen to be highly sensitive to
increases in treatment lethality using small-sample simulations. Increases in tumor lethality are seen
to affect the performance of commonly used prevalence tests such as logistic regression. A simple
survival-adjusted quantal response test appears to be the most robust of all the procedures considered.

1. Introduction

The problem of comparing treated groups in the presence of potential confounders is
common in statistics. Various statistical procedures have been used to address this problem,
including stratified analyses where strata are formed by grouping levels of the confounding
variables and regression procedures where the confounding variables are controlled in a
continuous fashion. This general problem will be discussed in the context of animal studies
where carcinogenesis as a function of treatment level is the outcome of interest and survival
time is the confounding factor.

The basic study design for determining carcinogenicity is the lifetime exposure rodent
study. In a typical carcinogenicity experiment, rodents are exposed to some compound
from the time of weaning (approximately 6-8 weeks old) until they die or are sacrificed at
the end of the study (usually 2 years). The data obtained from each animal include the
presence or absence of a tumor(s) and the age at death. The cause of death will be assumed
to be unknown. The question of interest in these studies is whether a significant dose-
response relationship exists between the administered compound and the presence of some
tumor or tumors. One major difficulty in such studies is that the time of tumor onset is
not observable. Various assumptions concerning the effect of tumor onset on animal
survival are used to circumvent this difficulty. Survival times confound the question of
carcinogenicity when the different treatment groups experience different patterns of cen-
soring with respect to tumor onset.

Two major factors that influence survival are treatment-induced mortality (or treatment
lethality) and tumor-induced mortality (or tumor lethality). Treatment lethality refers to
the potential of high doses of a compound to shorten survival. For this discussion, treatment
lethality refers to nontumor mortality. In carcinogenicity studies, substances are given at
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high doses that can be toxic, and thus might lead to the animal’s early death before a tumor
is observed. Tumor lethality refers to the influence of tumor presence on survival. A highly
lethal tumor would cause death shortly after its onset. An incidental tumor is a tumor
whose presence does not affect survival. It is readily apparent that both tumor lethality and
treatment lethality will affect survival times.

Statistical procedures applied in this context make assumptions regarding tumor lethality
1o allow inference on tumor onset times. Standard life-table analyses are appropriate for
tumors that are considered to be lethal (Mantel, 1966; Tarone, 1975). Logistic regression
techniques (Dinse and Lagakos, 1983) or the Mantel-Haenszel-type procedure of Hoel and
Walburg (1972) are appropriate for incidental tumors. This paper addresses the properties
of these tests under varying degrees of tumor lethality and treatment lethality when cause
of death is unattributable. In Section 2, the statistical tests to be considered are described
in detail. Section 3 describes a simulation experiment using a simple stochastic model of
tumor onset for visualizing the progression from a tumor-free state to a death state with or
without the tumor. In Section 4, the results of the simulation study are presented, and our
results are summarized in the last section.

2. Tests of Carcinogenesis

Consider a carcinogenicity experiment with K treated groups and a control group where
animals in the ith group receive dose z;, i =0, 1, ..., K. Suppose strata have been formed
over S time intervals, and let n;; denote the number at risk in the sth stratum for the ith
group, and let d;; denote the number of animals with the response of interest in this same
group-stratum combination. A dot in a subscript will be used to denote summation over
that subscript; hence, 1, = Z,ni, di. = Zodis, s = Zillis, and d., = Z.d;. Let ¢, denote the
expected number of animals that have the response of interest in the sth stratum of the ith
group. Using a multinomial model, we find that e;; can be estimated by E;; = n;(d.s/n.s).
Most of the commonly used tests for carcinogenicity can be formulated as special cases of
a generic test statistic Zg, where
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This type of generic test statistic formulation has also been used elsewhere (Gart et al.,
1987, Chap. 5; Bailer, Institute of Statistics Mimeo Series #1815T, University of North
Carolina, Chapel Hill, 1986). The different tests are oriented toward different null hy-
potheses depending on the assumptions used in deriving the test. However, in all cases,
under the null hypothesis, Z¢ is asymptotically distributed as a standard normal variate.
The distinction between most of the various test statistics is in the formation of the stratum
and the definition of the number at risk.
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2.1 Onset Test

Throughout this paper, we will use the term fumor onset to mean the presence of the first
histopathologically detectable tumor of the type being studied. We will not be concerned
with multiple tumors. Assuming that tumors are irreversible allows us to treat tumor onset
in the same manner as we treat a death in an ordinary survival analysis. If tumor onset
were observable, the life-table test derived by Tarone (1975) would be applicable to testing
the hypothesis of equal tumor incidence rates in all groups. The random generation of
tumor onset time is an intermediate step in the computer simulation of such carcinogenicity
experiments. Therefore, this test is applicable in the framework of simulation studies. This
“onset test” corrects for survival and requires no assumptions concerning tumor lethality;
thus, it provides a useful standard with which to compare the other tests. In the tumor
onset test, strata are defined by each tumor onset time. Animals that die prior to getting a
tumor are considered as censored observations. The animals given dose z; that are alive
and tumor-free just prior to the sth tumor onset time are denoted by #;,, and d,, represents
the number of animals who subsequently get the tumor at the sth tumor onset time.

2.2 Quantal Response

The remaining tests can be divided into two broad categories: binomial-based tests that use
only the quantal response (though two of the quantal response procedures discussed below
attempt to address potential survival differences) and tests that correct for treatment-
induced survival differences.

The Cochran-Armitage linear trend test (Armitage, 1955) considers the data from the
dose groups to be collapsed over the entire study period into one stratum (S = 1). All tests
of this type define d;, to be the number of animals in group / that are found to have the
tumor. The Cochran-Armitage linear trend test uses #;, equal to the number of animals
placed on study and Zg can be calculated accordingly. An implicit assumption in the use
of this test is that all animals are at equal risk of getting the tumor over the duration of the
study. However, because tumors sometimes have long latency periods and because some
treatments decrease survival, animals may die earlier in some treatment groups and thus
be at decreased risk of tumor onset. One method of correcting for this problem would be
to modify the value of n;; to reflect less-than-whole-animal contributions for decreased
survival. One way of doing this would be to define the number at risk for these tests as

* i1
n;y = Z wjj
=1

and then test hypotheses of increasing trends in the modified proportions, r;, where this
modified proportion is of the form
dil

.-
nj

i

The weights, w;;, are all equal to 1 for the Cochran-Armitage trend test.

Gart et al. (1979) suggest a procedure that defines the weights as w;; = 1 if the age at
death for the jth animal in the ith group, ¢;;, exceeds the time of the first death with tumor
present and w; = 0 if not. This test will be referred to as the truncated trend test.

As a second adjustment of this type, we will define the weights as w;; = 1 if the jth animal
in the ith group dies with the tumor present and w;; = (£;;/fmax)’ if nOt, Where £, is the
maximum survival time. This weighting scheme results from the observation that many
tumors seem to appear at the rate of a third- to fifth-order polynomial in time (see e.g.,
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Portier, Hedges, and Hoel, 1986). This test will be referred to as the Poly-3 trend test.
Further motivation for this test will be discussed later.

2.3 Survival-Adjusted Tests

Life-table test The life-table test is similar to the onset test except that strata are now
formed for each death time with a tumor, and the animals that are sacrificed at the
conclusion of the study form their own stratum. Animals that die without a tumor are
treated as censored observations. This is analogous to the combined analysis of fatal tumors
and terminal sacrifice tumors suggested by Peto et al. (1980). In terms of the generic test
statistic, n,, is the number of animals in group i that are alive just prior to the sth death
and d;, is the number of animals dying with the tumor present at the sth death time. This
is a test of treatment-related differences in the hazard of death with the tumor.

Prevalence tests Hoel and Walburg (1972) proposed to test the hypothesis of equal tumor
prevalence in the dosed groups within strata that are chosen external to the observed
survival times. The National Toxicology Program uses five strata when applying this
procedure (Haseman, 1984), where the strata are the time intervals (expressed in weeks):
0-52, 53-78, 79-92, 93-Terminal sacrifice, and Terminal sacrifice (often 104 weeks). For
this procedure, #;; is the number of animals dying in the interval formed by stratum s in
group i and dj, is the number of these animals with the tumor present.

Logistic regression (Dinse and Lagakos, 1983) can be used to model tumor prevalence
as a function of dose and survival time. Unlike the Hoel-Walburg procedure, logistic
regression adjusts for survival times in a continuous manner. In what follows, we use a
logistic model with a linear time effect and a linear treatment effect, and the hypothesis of
equal tumor prevalence is tested with a score test as employed by Dinse (1985). Note that
the generic test statistic Zg has been shown by Birch (1965) to be asymptotically equivalent
to a logistic regression score test under a model with a linear treatment effect and a time
parameter for each stratum. Hitchcock (1966) demonstrated near equivalence in finite
samples.

3. A Simulation Experiment

It is convenient to use a three-state stochastic model to describe the results of a carcino-
genicity experiment when cause of death is unobtainable. This model is illustrated in
Figure 1. The transition rates in this model are described by the hazard functions A;(¢),
Bi{(1), and v:(t, »). Let E, be the random variable that represents the time from initial
exposure to the occurrence of the first event which is either a tumor onset or a tumor-
free death. Let E, represent the time until tumor-bearing death. Let § be an indicator of
tumor presence (6 = 1) or absence (6 = 0). The hazard functions in Figure 1 can be
defined as

\() = lAileg(A)“Pr{t S E <t+A6=1|E =t z};
B:1) = lAi{g(A)“Pr{z SE<t+A6=0|E =1z}
vill, w) = liﬁ)l(A)“Pr{z skEh<t+A|lEi=wst,o=1,E =1t z}
Our interest concerns whether increases in administered dose are related to increases in
tumor incidence. As discussed by McKnight and Crowley (1984), the null hypothesis in

carcinogenicity studies should be expressed in terms of tumor incidence rates because tests
in terms of other rates can be biased when test assumptions are violated. In the context of
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Figure 1. Three-state stochastic model for carcinogenicity experiments when cause of death is
unobtainable.

the model above, the null hypothesis test of interest then would be Ho: Ao(£) = N (1) = - - -
= Ax(7). The incidence test addresses this hypothesis directly because it is based on the
time of tumor onset. The remaining tests address this hypothesis in special cases as
outlined below.

The hypothesis tested by the Cochran-Armitage trend test is whether the probability of
developing the tumor in group i before study termination (7'S), =, is the same in every
group. This probability can be expressed in terms of the hazard functions defined above as

™= J; ‘ Ai(u)expjt— J; Ni(x) + Bx)] dX} du. (1)

Under the assumption that Ag(f) = - - - = Ak(f), the only time we are assured that wo = 7,
= ... = 1 is when Bo(¢) = 8,(t) = --. = B«(¢). In other cases, it is possible to have =; #
x, (i # j) even when Xo(f) = M (t) = - .. = Ax(2). Similarly, it is possible to have =, =

m, (i # j) when the X’s differ.
It is shown in the Appendix that the modified proportion r; as defined in Section 2.2

approximates
s
1 - exp[—f Ai(s) ds],
0

_ J§ N(s) ds
S8 Ni(s) ds

for animals that die at time 7, without the tumor. When \,(s) is of the order of 7%, the Poly-
3 test satisfies this condition, and the test should be fairly robust to varying degrees of
treatment lethality. The Appendix gives arguments as to why this approximation should
work well. The simulations that follow address this point directly for small samples.

The hypothesis tested in the life-table test is that there is no difference in the event-
specific hazard functions for death with tumor in the K + 1 groups (Tarone, 1975). The
hazard is “event-specific” because differences in the time until death with tumor present
are of interest. Death without the tumor present is treated as a censoring mechanism. The

where w;; is chosen to be

wjj
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hazard of death at time s in group / and tumor onset before time s will be denoted by 4;(s).

The hazard function, #,(s), can be written in the terms of the stochastic model as
Jo Hi(u, s)yi(s, u) du

I8 Hiu, s) du + exp{—f3 [N(x) + Bi(x)] dx}’

hi(s) = 2

where

Hiu, s) = Af(u)exp{—j; [Ai(x) + Bix)] dx}exp[—f yi(w, u) dW}-

The term H;(u, s) represents the probability that an animal with tumor onset at time u
survives until time s. When the assumption of instantly lethal tumors is true [i.e.,
Pr(D =1¢|T=s5)=1fort=sand 0 for t > s], the expression for the hazard function
reduces to 4,(s) = A(s).

The life-table test rejects the null hypothesis of no survival differences in the various dose
groups when decreased survival with tumor is associated with increasing dose levels. If the
hazard of death given the tumor is present is some function of the hazard of death given
the tumor is absent [i.e., v;(t, u) = f(B:(¢), u)] then decreased survival with tumor in
the higher-dose groups can occur when Bo(f) < 8,(t) < ... < Bx(?) even though N\(2) =
M () = - -+ = (). Therefore, treatment lethality effects can cause greater than expected
Type I errors and inflated power estimates.

The prevalence tests compare the probabilities of tumor presence given death within a
particular stratum or at a certain time. The null hypothesis for these procedures can be
stated as Hp: ko(s) = - - - = kg(s) where «;(s) = Pr(tumor present | animal dies at time s).
This probability will equal the prevalence, Pr(tumor present | animal alive at time s), if the
tumor is nonlethal. In terms of the stochastic model given above, this probability can be
expressed as

Ai(s)
Ai(s) + Bi(s)expi—[o [M(x) + Bi(x)] dx}’

where A4,(s), the density for death with tumor at time s, is given by

Ai(s) = J; A exp{— J; Ai(x) + Bix)] dX}Mu)exp{— f vilw, u) dW]v,-(s, u) du.

Under the incidental tumor assumption, v,(w, u) = 8{w), this probability reduces to

AT(s)
A¥(s) + exp[—[§ M(x) dx]’

A¥(s) = J; )x,(u)exp{—j; Ai(x) dx] du.

Hence, the prevalence tests are functions only of the tumor incidence rate when the
incidental tumor assumption is valid.

From looking at these null hypotheses, we get some indication of the possibility for
incorrect Type I error rates using these tests. The simulation study that follows was used to
quantify this problem. A major concern in the simulation of survival data is determining
a reasonable form for the hazard functions described above and finding logical values for
the parameters of these functions. Portier et al. (1986) provide hazard functions that
adequately fit a large historical database of untreated animals. The models suggested by
their analyses are used in this study. For the control group tumor incidence rate, we use a

(3

Ki(s) =

s) =

where
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two-parameter Weibull function of the form
)\0([) = mnzt"z_l.

For the control group hazard of death given the tumor is absent, a modified Weibull hazard
function provided an adequate fit. This model is given by

Bot) = ay + cra3t™ ™",

For the purposes of this simulation, we will treat 8(¢) as not varying with tumor type. The
hazard functions for the other groups will be modelled in a proportional hazards framework
where

N(t) = (1 + noz)Ao(2) and B;(1) = (1 + aoz:)Bo(?).

The values for «; and 5, (i = 1) that were used in the following simulations can be found
in Portier et al. (1986). A representative sample of three sex—species-tumor site combina-
tions will be discussed in detail in the following sections. These three combinations were
selected because they illustrate a range of background tumor rates from approximately 1%
to 19%.

The hazard of death for a tumor-bearing animal was modelled by assuming that this
hazard was equal to the hazard of death for a tumor-free animal plus some treatment-
independent continuous function of the time since tumor onset; i.e., v:(f, w) = 8:(t) +
f(t — w). The portion of the cumulative hazard attributed to f can be written as

L f(S - ‘JJ) dS = ¢0a2(t - w)(lmax)az_l'

This cumulative hazard implies that the lifetime hazard of death for an animal with early
tumor onset is approximately (1 + ¢o) times the hazard of death for a tumor-free animal.
Thus, by varying the value for ¢o, we can range from incidental tumors (¢o = 0) to highly
lethal tumors (¢o > 0).

Two experimental designs were considered in the simulations: a four-dose design with
50 animals per group and doses of 0, .25, .50, and 1; and a three-dose design with 50
animals per group and with doses of 0, .50, and 1. The results from these different designs
were very similar; hence, only the results from the four-dose design are reported. In this
simulation study, four onset factors (n), three treatment lethality factors (ap), and three
tumor lethality factors (¢o) were considered. Hence, 36 onset by treatment lethality by
tumor lethality combinations were studied for each of 20 sex-species-tumor site combi-
nations yielding a total of 720 unique simulation conditions. Each simulation condition
was replicated 1,300 times, which leads to an approximate 95% confidence interval of
[.038, .062] for a true binomial probability of rejection of .05.

The three treatment lethality effects considered were ap = 0, ap = 1, and « = 4.
Treatment lethality effects of oy = 1 were found in approximately 30% of the gavage
experiments considered in unpublished work by Bailer and Portier. Treatment lethality
effects of ap = 5 were observed in over 10% of the gavage experiments in this same set of
experiments. Bailer and Portier also considered feeding studies. In 11% of those studies, a
treatment lethality of ap = 1 was observed.

4. Results

4.1 Typel Error Rates

The estimated Type I error rates of the test statistics for a subset of the models considered
in this simulation study are presented in Table 1. The three sex—species—tumor site
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Lethality Effects on Tests of Carcinogenicity 425

combinations presented in Table | provide a representative sample of the background
tumor rates we considered.

The Type 1 error rate of the incidence test, Z,, is unaffected by changes in treatment
lethality or by changes in tumor lethality.

The Cochran-Armitage trend test, Z,, the Poly-3 trend test, Z,, and the truncated trend
test, Z,, have smaller Type I error rates with increasing treatment lethality for almost all
conditions considered. This result confirms the statements in the previous section where
the =; and €, (Appendix) are seen to be a function of both A\;(x) and 8;(x). In fact, =, is a
decreasing function of 8;(x). Therefore, when Ao(t) = N () = - -+ = Nc(f) and Bo(1) < B, (1)
< ... < Bx(t), we see that =y = --. = g, and the Cochran-Armitage trend test will be
less likely to reject than nominally specified. Tumor lethality seems to have no effect on
the significance levels of these tests. This is an expected result because «; and Q; (Appendix)
are not functions of ;. Generally, both of the modified trend tests (Z, and Z) show
superior robustness to treatment lethality over that of the Cochran-Armitage trend test.
The modified trend procedures tend to have larger Type I error rates than the true
significance level for the smallest background tumor rate, and the effect of treatment
lethality on the level of the quantal response trend tests appears to increase as the
background tumor rate increases. The results for the Poly-3 test support the arguments
given in the Appendix that this test should be robust with respect to varying degrees of
treatment lethality. In addition, we observed that the test statistic seems to have the correct
distributional form for the small samples considered.

The conservative response of Z, under increasing treatment lethality conditions may be
explained as follows. Since treatment lethality may serve as a censoring agent, animals in
the higher-dose groups may be less likely to live long enough for tumor onset than animals
in the control group. Thus, the resulting estimate of the probability of tumor response in
the high-dose groups may be artificially low relative to the estimate in the control group.
Under the null hypothesis of no linear trend in the probability of tumor onset, this would
lead to Z, rejecting less frequently than nominally specified. This fact becomes obvious
when one considers equation (1).

As seen in Table 1, the observed Type I error rate was inflated in the truncated trend
test, Z,, for rare tumors and high treatment lethality. A possible explanation for this
phenomenon is that the sample sizes used in calculating the probabilities of tumor onset
for Z, may be dramatically reduced in situations of rare tumors. With high treatment
lethality and rare tumors, the number at risk may be very small in the higher-dose groups,
which could lead to inflated estimates of the probability of tumor onset in those groups.
These inflated estimates in the higher-dose groups could cause Z, to reject more frequently
than nominally specified under the null hypothesis. Gart, Chu, and Tarone (1979) suggested
including in the number at risk only those animals that died after some predetermined age
for rare tumors. This adjustment may improve the operating characteristics of this test for
rare tumors and high treatment lethality.

When considering the operating characteristics of the Poly-3 trend test, Z,, one must
discuss the factor (z;//fmax)* When the true shape, 7., of the onset distribution differs from
n = 3. If n, < 3 (e.g., female rat lung tumors), the factor (¢;//fmax)” Will be smaller than it
would be if 7, were used as an exponent. Thus, the number at risk would be smaller using
the exponent equal to 3, which in turn implies that the estimate of the probability of tumor
onset would be larger than it would be if the true onset shape parameter were used. In the
case where 7, < 3 and some treatment lethality is present, it might be predicted that Z,
would reject more frequently than nominally specified under the null hypothesis. By
analogy, one might predict that Z, would reject less frequently than nominally specified
for 7, > 3 and for some treatment lethality. The predictions from this hypothetical discussion
are confirmed by the results presented in Table 1.
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The Type I error rate of the life-table test, Z;,, increases as the level of treatment lethality
increases. Within a given degree of treatment lethality, increasing tumor lethality leads to
rejection probabilities that are closer to the nominal levels. This is expected because, as ¢
increases, the age at death from the tumor converges to the age at tumor onset. The
empirical behavior of this test matches its predicted behavior based on a consideration of
the event-specific hazard functions, 4,(s), given earlier. For high treatment lethality and no
tumor lethality, one would expect that the number at risk would decrease with the
administered dose. Because of the decreased number at risk in the higher-dose groups, the
expected number of tumor-bearing deaths in the higher-dose groups will also be decreased.
Hence, the observed minus expected tumor-bearing deaths will increase with dose, which
leads to Z, operating in an anticonservative manner.

The rejection probabilities of the Hoel-Walburg test, Z.., and the logistic regression test,
Z\e, were affected in a complex fashion by treatment lethality and tumor lethality. This
pattern is expected when one considers equation (3). Within a particular level of tumor
lethality, the Type I error rate tended to decrease with increasing levels of treatment lethality
as predicted by Lagakos (1982). Dinse (1985) illustrated similar effects of treatment lethality
on the prevalence tests Zy. and Zjog.

4.2 Power Results

Table 2 presents the probability of rejection for the test statistics considered in this study
for the situation where the compound induces a doubling in tumor onset in the high-dose
group over the control group. For conditions of no treatment lethality and no tumor
lethality, all tests have essentially the same power, and all tests show an increase in power
as the background tumor rate increases. Within a given level of background tumor rate,
the power of these tests will vary according to the Type I error rate given previously. For
example, since quantal response tests become conservative with increasing levels of dose-
related toxicity, it is expected (and is observed) that these tests are less powerful with the
introduction of dose-related toxicity, and therefore these tests have a decreased capability
of detecting true differences in tumor incidence between the groups. The inflated Type 1
error rate for the life-table test leads to a corresponding inflation in power; hence, many
compounds may be incorrectly flagged as tumorigenic when this test is used. Tumor
lethality, which leads to conservative Type I error rates in the prevalence tests, is translated
into reduced power for detecting true tumorigenic differences between the groups.
Essentially all of the tests have a power of 1.0 for tumor sites with a background tumor
rate exceeding 19% and a five- or tenfold increase in tumor incidence in the high-dose
group relative to the control group. For a 5% background tumor rate, no treatment lethality,
and no tumor lethality, the power of the tests is approximately .8 for the fivefold increase
in tumor incidence and nearly 1.0 for the tenfold increase in tumor incidence. For a 1%
background tumor rate, no treatment lethality, and no tumor lethality, the power of the
tests ranges from .4 for the fivefold increase in tumor incidence to .75 for the tenfold
increase in tumor incidence. With regard to increases in tumor lethality and increases in
treatment lethality, the tests behave in a similar fashion to the results found in Table 1.

5. Discussion

The results from this simulation study indicate the sensitivity of many standard tests for
carcinogenicity to treatment lethality and tumor lethality. Thus, treatment lethality and
tumor lethality clearly play important roles in the analysis of bioassay experiments.
Quantal response trend tests are robust to tumor lethality assumptions, which is not
surprising because these tests depend only on the presence of the tumor and not on the
time of tumor occurrence. However, treatment lethality has dramatic effects on the quantal
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response tests. This is related to the fact that even if a dose response exists, treatment
lethality can kill animals prior to the occurrence of a tumor. Since most carcinogenicity
studies show some evidence of treatment lethality, a survival-adjusted quantal response
trend test is a necessity. The Poly-3 test appears to be superior to the truncated trend test
in this regard. The anticonservative nature of Z, for the low background case described in
the previous section results from the fact that the shape of the tumor incidence function
for this case is much smaller than 3. A small simulation experiment was done to assess the
effect of changes in the shape parameter of the tumor incidence function (»;) on the Type
[ error rate of the Poly-3 test. Except for the case of a rare tumor, this test does very well
at maintaining the proper Type I error rate. For higher treatment lethality («o = 4) and as
the onset distribution shape parameter increased from 3, the Type I error rate dropped off
dramatically. We also considered the operating characteristics of an obvious modification
of the Poly-3 test, the Poly-k test, when 7, = k. We found that, except for extremely small
backgrounds, the true Type I error rate was not “significantly” different from the nominal
level. Thus, when some knowledge of the shape of the tumor incidence function over time
is available, the Poly-3 test can be improved.

The utility of the life-table test is questionable because it is extremely sensitive to
treatment lethality. The prevalence tests are proposed as tests that correct for treatment
lethality; however, we were surprised to find the degree of the effect that extreme treatment
lethality can have on the Type I error rates of these tests. The magnitude of the effect of
treatment lethality on the life-table test and on the prevalence tests was seen to depend on
tumor lethality. Since many studies will have moderate treatment lethality and unknown
tumor lethality, these tests should be used with care.

As with any analysis of the operating characteristics of test statistics, the results of this
study are applicable only to the cases considered. However, the cases considered here cover
a broad range of possibilities and should be applicable to most carcinogenicity experiments.
One case we did not consider was when the effect of treatment on tumor incidence was
nonlinear. Since all of the tests studied here assume a linear trend as the alternative
hypothesis, we feel justified in considering only the linear case. As further research, it would
be of interest to consider the power of the more robust linear trend tests when the data
arise from a nonlinear treatment effect. Finally, the logistic regression model used in this
analysis controlled for survival differences by using a linear time effect. It may be possible
to improve the operating characteristics of this test statistic by using a cubic time effect
similar to that used by the Poly-3 test.

We would like to note also that several tests are available for directly controlling the
effects of mortality in animal carcinogenicity experiments (McKnight and Crowley, 1984;
Dewanji and Kalbfleisch, 1986; Portier, 1986; Portier and Dinse, 1987). All of these
procedures require interim sacrifices in addition to a terminal sacrifice. These procedures
are likely to have reduced power for testing for increased trends in tumor incidence when
compared to the procedures outlined in this paper due to fewer assumptions and an
increased number of estimated parameters. However, this decreased power more accurately
reflects our lack of knowledge about mortality and tumor incidence. We suggest that
researchers consider modifying experimental designs to include interim sacrifices to allow
for the use of these newer tests.

In summary, when no information is available on tumor lethality and differences in
treatment lethality exist in terminal sacrifice studies, the Poly-3 procedure appears to be
the most robust test. If information is available about tumor lethality, a survival-adjusted
test can be used. If the shape of the tumor incidence function is expected to follow time to
some power k, the Poly-3 test can be modified to become a Poly-k test, which should have
superior operating characteristics to the Poly-3 test.
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RESUME

I1 est montré que les tests statistiques utilisés en carcinogénése sont plus ou moins robustes vis a vis
des effets de la mortalité. Deux types de mortalité sont considérés: celle induite par la tumeur d’intérét
et celle due au traitement, indépendamment de la tumeur. Des simulations d’éxpériences a faibles
effectifs montrent que les deux méthodes le plus couramment utilisées (celle de la table de survie et
le test de tendance linéaire de Cochran et Armitage) sont trés sensibles a la letalité due au traitement.
La letalité tumorale affecte les performances des méthodes habituelles de traitement des pourcentages,
telles que la regression logistique. Un test simple sur une réponse en tout ou rien, avec prise en
compte de la survie, semble la plus robuste de toutes les procédures considérées.
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APPENDIX

Derivation of the Modified Quantal Response Tests

Consider the proportion

IS

il

>
Il

s

=
%

i

where d,, and n¥ are defined as in Section 2.2 where the data have been collapsed over the entire
study period. We know that

d Ts
lim &=, = f N(WF,(u) du,
0

ny—e iy

where

Fiu) = exp{—f [A(x) + Bi(x)] dX}-

Using the notation from Section 2.2, assume that animals that get the tumor during the course of the
study and animals that live to terminal sacrifice are given a weight of w; = 1, and let g,(¢;) denote
the weight given to animals that die prior to study termination (7'S) and are tumor-free, where /;
denotes the age at death for the jth animal in the ith group. It can be shown that
:’z s

lim % =7, + F(TS) + f giu)B{(u)Fi(u) du.

Ay T 0
With this, we are able to calculate what 7; looks like for large samples. After a little aigebra, we find
that

lim (1 —r) = S(TS)Q,

npy—®o

where

Si(s) = exp[—Ais)], Ads) = J; A(x) dx,

_ 1= 8 B)Fi)[S{u) " — gw)SATS) '] du
1= 3 Biw)F w1 — gi(u)] du ’
If 2, = 1, then r; approximates | — S;(TS), which is a function of only the tumor incidence rate, A(2),
and is independent of mortality.
It follows that €; = 1 if S;(r)™' — g(1SATS)™' = 1 — gi(r) for all r or, equivalently, if
= LSO

& I = S(TS)™
for all r. However, in order to use this weight, one must know the entire dose-time-response model.
If we use a first-order Taylor approximation of S;(x)~', we obtain

Ai(r)

A(TS)
The advantage to using this approximation is that the scale parameter, #,, of the Weibull hazard

described in Section 3 factors out of the formula. The weight is then fully specified by the shape
parameter, 7,, and is given by

oo [\

&(r) = <TS> .

For some rodent studies, 1 + A(r) will poorly approximate exp[A(r)]. Therefore, we must be
concerned with the degree to which ©; differs from | when this approximation is used. Substituting

Q

gi(ry =
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&/(r) for g(r) results in ©, = 1 + R,, where R, is given by

8 BF @)L (M) ~ AGATSY )Y du
= J& BAF@1 = A)/A(TS)] du

By studying the terms within the integral in the numerator, we see that this remainder will be very
small in most cases. Since very few animals die early in carcinogenicity experiments, 3;() is virtually
zero for all small values of . For larger values of u, the difference between A, (1)’ and A;(u)A,(TS)™!
becomes very small. Thus, except for the cases where 8;(1) is large for small times, this remainder will
be very small. This result is supported by numerical results from both the small-sample simulations
and the direct calculation of R;.

For large samples, a trend test through these r; values should have the proper operating character-
istics for testing the hypothesis of equal tumor incidence rates among the various groups. Although
we present no additional analytical support for this contention, the small-sample simulations provide
strong evidence that this is the case.

The derivation given here assumes that some knowledge of the form of A;(z) is available and is
applied correctly. If the wrong functional form for A;(z) is chosen, it is possible to create a bias. This
is discussed in Section 5 for the class of Weibull hazards we have considered. It is unknown what
could happen with other forms of the tumor incidence function.

R, =
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